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Abstract
Ground-state and finite-temperature properties of the mixed spin- 1

2 and spin-
S Ising–Heisenberg diamond chains are examined within an exact analytical
approach based on the generalized decoration–iteration map. A particular
emphasis is laid on the investigation of the effect of geometric frustration,
which is generated by the competition between Heisenberg- and Ising-type
exchange interactions. It is found that an interplay between the geometric
frustration and quantum effects gives rise to several quantum ground states
with entangled spin states in addition to some semi-classically ordered ones.
Among the most interesting results to emerge from our study one could
mention rigorous evidence for quantized plateaux in magnetization curves, an
appearance of the round minimum in the thermal dependence of susceptibility
times temperature data, double-peak zero-field specific heat curves, or an
enhanced magnetocaloric effect when the frustration comes into play. The
triple-peak specific heat curve is also detected when applying small external
field to the system driven by the frustration into the disordered state.

1. Introduction

Over the last three decades, the low-dimensional quantum spin models with competing
(frustrated) interactions have attracted considerable research interest, especially due to their
extraordinary diverse ground-state behaviour. Geometrically frustrated spin systems constitute
a special sub-class of the frustrated models that can be distinguished by incapability of spins,
inherent in their lattice positions, to simultaneously minimize the ground-state energy of each
individual spin–spin interaction [1]. As a rule, the quantum spin systems affected by a rather
strong geometric frustration often exhibit an exotic non-magnetic ground state (which does not
have its classical analogue) in addition to a rich variety of the semi-classically ordered ones [2].
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It is worthy of notice, moreover, that a subtle interplay between the geometric frustration and
quantum fluctuations gives rise to a number of intriguing phenomena including the macroscopic
degeneracy of ground state [3], order by disorder effect [4], chirality [5], quantum phase
transitions [6–8], quantized plateaux in the magnetization curves [8–10], double-peak specific
heat curves [11–13], enhanced magnetocaloric effect [14–17], etc.

Despite a significant amount of effort, there are only a few frustrated spin- 1
2 quantum

Heisenberg models, such as the Majumdar–Ghosh model on the double chain [18–21], the
sawtooth (�) chain [22–25], or the Shastry–Sutherland model [26], for which precise analytic
solution is available at least for the ground state. Nevertheless, it should be pointed out that
frustrated quantum systems are in general rather difficult to deal with, since extensive numerical
methods must be used in order to obtain a reliable estimate of their magnetic properties. From
this point of view, the one-dimensional (1D) frustrated spin systems are the simplest systems
with respect to accurate treatment. Of these systems, the spin- 1

2 quantum Heisenberg model
with diamond chain topology is currently actively engaged in the investigation of geometric
frustration. Interestingly, this simple quantum system turned out to have rather complex ground
state; apart from the usual ferrimagnetic phase there are in fact several quantum dimerized and
plaquette states involved in the zero-field ground-state phase diagram [27–29]. Further studies
devoted to the spin- 1

2 quantum Heisenberg model on the diamond chain have provided fairly
accurate results for the ground-state phase diagram in a presence of the external field [30–32],
the spin gap [33], the magnetization and the susceptibility [34]. Another remarkable finding
relates to the observation of an inversion phenomenon, which can be induced in the frustrated
diamond chain through the exchange anisotropy [35, 36]. Note that the ground state and
thermodynamics of the mixed-spin diamond chains also containing higher-spin sites have
already been particularly examined as well [37–41].

It is worthwhile to remark that 1D frustrated spin systems have initially been introduced
purely as toy models suitable for investigating the effect of spin frustration. However, recent
progress achieved in the design and controlled synthesis of molecular-based magnetic materials
afforded another stimulus for testing 1D frustrated spin systems by overcoming the lack of
desirable model compounds. As a matter of fact, the rapidly expanding field of molecular
engineering has led to fabrication of several coordination polymers, which can be regarded
as genuine examples of the frustrated spin models [42]. With the help of structural data
known long ago [43], Kikuchi and co-workers [44–52] have recognized Cu3(CO3)2(OH)2

(azurite) as an appropriate candidate for the diamond chain compound. Experimental data
measured for the high-field magnetization, susceptibility, specific heat, NMR [44–47] and ESR
data [48–52] have indeed confirmed Kikuchi’s conjecture and it is now quite well established
that the azurite represents the actual material for the frustrated diamond chain. It should also
be mentioned that sufficiently strong frustration found in the azurite clearly manifests itself in
its quantum features: the high-field magnetization shows a quantum plateau at one-third of the
saturation magnetization, the susceptibility turned out to have two round peaks at relatively low
temperatures and ESR data have proven the gapless excitation spectrum. Theoretical interest
focused on the diamond chain structure also enhances its other experimental realizations
provided by the polymeric compounds such as Cu2OSO4 [53] and M3(OH)2 (M = Ni, Co,
Mn) [54–57].

With this background, we shall investigate in the present article a simplified version of
the frustrated Ising–Heisenberg diamond chain, which can exactly be solved by applying an
accurate map based on the generalized decoration–iteration transformation [58, 59]. It is
noteworthy that this relatively simple and straightforward analytical approach has recently
been adapted to study an appearance of quantized plateaux in the magnetization process of
the trimerized [60, 61] and tetramerized [62, 63] Ising–Heisenberg linear chains. As we shall
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Figure 1. Diagrammatic representation of the mixed-spin Ising–Heisenberg diamond chain. The
empty (filled) circles denote the lattice positions of the Ising (Heisenberg) spins; the ellipse
demarcates kth diamond-shaped plaquette.

show hereafter, the same strategy can also be used to explore the frustrated Ising–Heisenberg
diamond chain, which represents another particular realization of models tractable within the
generalized algebraic maps. The main goal of the present work is to exploit a grand advance
of the method used for obtaining exact results for all possible ground states as well as all basic
thermodynamic quantities.

The rest of this paper is organized as follows. The model Hamiltonian and major features
of the mapping method are presented in section 2. Section 3 is divided into two sub-
sections. In the former one, we provide rigorous results for the spin- 1

2 Ising–Heisenberg
diamond chain, while the latter one comprises magnetic data of the mixed spin- 1

2 and spin-
1 Ising–Heisenberg diamond chain. Altogether, exact results for ground-state phase diagrams,
magnetization, entropy, susceptibility and specific heat are derived and particularly discussed
for both investigated diamond chains. A cooling rate of adiabatic demagnetization is also
explored in connection with the enhanced magnetocaloric effect. Finally, some concluding
remarks are drawn in section 4.

2. The model and its exact solution

Let us begin by considering two kinds of spins regularly distributed on the 1D lattice composed
of the diamond-shaped units as diagrammatically depicted in figure 1. To ensure an exact
tractability of this spin system, we shall further suppose that each diamond-shaped plaquette
consists of two dumbbell Heisenberg spins (S), which are placed in between two Ising spins (µ)
residing in corner-sharing positions on the diamond motifs. For further convenience, we shall
write the total Hamiltonian as a sum over plaquette Hamiltonians, i.e. Ĥ = ∑N

k=1 Ĥk , where
each plaquette Hamiltonian Ĥk involves all interaction terms associated with one diamond-
shaped unit (see figure 1)

Ĥk = JH[�(Ŝx
3k−1 Ŝx

3k + Ŝ y
3k−1 Ŝ y

3k) + Ŝz
3k−1 Ŝz

3k] + JI(Ŝz
3k−1 + Ŝz

3k)(µ̂
z
3k−2 + µ̂z

3k+1)

− HH(Ŝz
3k−1 + Ŝz

3k) − HI(µ̂
z
3k−2 + µ̂z

3k+1)/2. (1)

Above, µ̂z
k and Ŝα

k (α = x, y, z) denote spatial components of the spin- 1
2 and spin-S operators,

the parameter JH stands for the anisotropic X X Z interaction between the nearest-neighbouring
Heisenberg (dumbbell) spins and the parameter JI accounts for the Ising-type coupling between
the Heisenberg spins and their nearest Ising neighbours. The parameter � allows us to control
the Heisenberg exchange interaction JH between the easy-axis (� < 1) and easy-plane (� > 1)
regime and finally, the last two terms incorporate coupling of the Ising and Heisenberg spins to
an external longitudinal magnetic field HI and HH, respectively.

The crucial point of our calculation represents calculation of the partition function.
By making use of the commutation rule between different plaquette Hamiltonians, i.e. by
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exploiting [Ĥk, Ĥl] = 0 valid for each k �= l, the partition function of the Ising–Heisenberg
diamond chain can be partially factorized into the following product:

Z =
∑

{µi }

N∏

k=1

Trk exp(−βĤk), (2)

where β = 1/(kBT ), kB is Boltzmann’s constant, T the absolute temperature, the symbol∑
{µi } means a summation over all available configurations of Ising spins {µi} and Trk

stands for a trace over spin degrees of freedom of two dumbbell Heisenberg spins belonging
to the kth diamond unit. After performing this partial trace, the structure of relation (2)
immediately implies a possibility of applying the generalized decoration–iteration mapping
transformation [58, 59]

Trk exp(−βĤk) = exp
[
β HI(µ

z
3k−2 + µz

3k+1)/2
]
G

[
β JI(µ

z
3k−2 + µz

3k+1)
]

= A exp
[
β Rµz

3k−2µ
z
3k+1 + β H0(µ

z
3k−2 + µz

3k+1)/2
]
, (3)

which converts the Ising–Heisenberg diamond chain into the uniform spin- 1
2 Ising linear

chain with an effective nearest-neighbour coupling R and an effective external field H0. The
expression G(x) in the first line of equation (3) depends on the spin of the Heisenberg atoms
and its explicit form is given in the appendix for two particular spin cases S = 1

2 and 1. It is
noteworthy that a general validity of the mapping relation (3) necessitates a self-consistency
condition to be satisfied, which means that it must hold independently of spin states of both
Ising spins µ3k−2 and µ3k+1. It can readily be proved that a substitution of four possible
configurations of the Ising spins µ3k−2 and µ3k+1 into the formula (3) indeed gives just three
independent equations, which unambiguously determine the unknown mapping parameters A,
R and H0,

A = (
G1G2G2

3

)1/4
, β R = ln

(
G1G2

G2
3

)

, β H0 = β HI + ln

(
G1

G2

)

. (4)

Here, we have defined the functions G1 = G(β JI), G2 = G(−β JI) and G3 = G(0) in order to
write the transformation parameters A, R and H0 in more abbreviated and general form. Now,
a direct substitution of the transformation (3) into the expression (2) yields the equality

Z(β, JI, JH,�, HI, HH) = ANZ0(β, R, H0), (5)

which establishes an exact mapping relationship between the partition function Z of the Ising–
Heisenberg diamond chain and, respectively, the partition function Z0 of the uniform spin- 1

2
Ising linear chain defined by means of the nearest-neighbour coupling R and the effective field
H0. Notice that the exact solution for the partition function of the latter system is well known
(see for instance [64]) and hence the relation (5) can readily be utilized for calculation of some
important quantities (magnetization, entropy, specific heat and susceptibility) by making use
of the standard thermodynamical–statistical relations. It should be mentioned, however, that
there also exists another alternative approach that is of particular importance if some relevant
physical quantity cannot be obtained within this procedure. Actually, the problem connected
with the calculation of correlation functions and/or quadrupolar moment can be simply avoided
by employing the following exact spin identities:

〈 f1(µ̂
z
1, . . . , µ̂

z
3k−2, . . . , µ̂

z
3N−2)〉 = 〈 f1(µ̂

z
1, . . . , µ̂

z
3k−2, . . . , µ̂

z
3N−2)〉0, (6)

〈 f2(µ̂
z
3k−2, Ŝα

3k−1, Ŝγ

3k, µ̂
z
3k+1)〉 =

〈
Trk f2(µ̂

z
3k−2, Ŝα

3k−1, Ŝγ

3k, µ̂
z
3k+1) exp(−βĤk)

Trk exp(−βĤk)

〉

. (7)

In the above, the function f1 depends exclusively on the Ising spin variables {µi}, while the
function f2 may depend on any spin variable belonging to the kth diamond plaquette. The
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superscripts α, γ ∈ (x, y, z) label spatial components of the appropriate spin operators, and
finally the symbols 〈· · ·〉 and 〈· · ·〉0 stand for the standard canonical average performed over the
ensemble defined on the Ising–Heisenberg diamond chain and its corresponding Ising chain,
respectively. By applying the exact spin identities (6) and (7), one easily attains rigorous
results for the sub-lattice magnetization mz

i and mz
h reduced per Ising and Heisenberg spin,

respectively, and the pair correlation functions cxx
hh , czz

hh and czz
ih , as well as the quadrupolar

moment qzz
hh

mz
i ≡ 〈µ̂z

3k−2〉 = 〈µ̂z
3k−2〉0 ≡ m0, (8)

cz
ii ≡ 〈µ̂z

3k−2µ̂
z
3k+1〉 = 〈µ̂z

3k−2µ̂
z
3k+1〉0 ≡ ε0, (9)

mz
h ≡ 〈Ŝz

3k〉 = K1/4 + m0L1 + ε0M1, (10)

czz
hh ≡ 〈Ŝz

3k−1 Ŝz
3k〉 = K2/4 + m0 L2 + ε0 M2, (11)

cxx
hh ≡ 〈Ŝx

3k−1 Ŝx
3k〉 = K3/4 + m0 L3 + ε0M3, (12)

czz
ih ≡ 〈µ̂z

3k−2 Ŝz
3k−1〉 = L1/8 + m0(K1 + M1)/4 + ε0 L1/2, (13)

qzz
hh ≡ 〈(Ŝz

3k−1)
2〉 = K4/4 + m0 L4 + ε0 M4. (14)

As one can see, all afore-listed quantities can be expressed in terms of the single-site
magnetization m0 and the nearest-neighbour correlation ε0 of the spin- 1

2 Ising linear chain
given by R and H0. Since exact analytical formulae for those quantities have been obtained
in the literature many times before [64], we shall restrict ourselves for brevity to listing the
coefficients Ki , Li and Mi (i = 1–4) emerging in the set of equations (8)–(14)

Ki = Fi (β JI) + Fi (−β JI) + 2Fi (0), (15)

Li = Fi (β JI) − Fi (−β JI), (16)

Mi = Fi (β JI) + Fi (−β JI) − 2Fi(0). (17)

An explicit representation of the functions Fi (x) is too cumbersome to write it down here and
it is therefore left for the appendix.

Finally, we simply quote the well known thermodynamical–statistical relations, which
have been utilized for calculating Gibbs free energy G, entropy S, specific heat C and
susceptibility χ . Accurate results for these quantities have been obtained with the help of
the precise mapping relation (5) and using

G = −kBT lnZ = G0 − NkBT ln A, (18)

S = −
( ∂G
∂T

)

H
, C = −T

( ∂2G
∂T 2

)

H
, χ = −

( ∂2G
∂ H 2

)

T
, (19)

where G0 is referred to as the Gibbs free energy of corresponding spin- 1
2 Ising chain [64].

3. Results and discussion

Before proceeding to a discussion of the most interesting results it is worth mentioning
that the results derived in the preceding section hold regardless of whether ferromagnetic or
antiferromagnetic interactions are assumed. As we are mainly interested in examination of
the spin frustration effect, in what follows we restrict both exchange parameters JH and JI

to positive values in order to match the situation in the frustrated antiferromagnetic diamond
chain. Furthermore, it is convenient to reduce the number of free parameters by assuming equal
g-factors for the Ising and Heisenberg spins, i.e. by imposing the same parameter representing
the effect of external field HI = HH = H . To simplify further discussion, we shall also
introduce a set of reduced parameters t = kBT/JI, h = H/JI and α = JH/JI as describing
dimensionless temperature, external field and the strength of frustration, respectively.
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Figure 2. (a) Ground-state phase diagram in the �–α plane for the system in the absence of an
external magnetic field; (b) ground-state phase diagram in the α–h plane for � = 1.0. Spin order
|FRI〉, |FRU〉 and |SPP〉 to emerge within different sectors of phase diagrams is unambiguously
determined by the wavefunctions (20)–(22), respectively.

3.1. Spin- 1
2 Ising–Heisenberg diamond chain

First, let us take a closer look at the ground state of the spin- 1
2 Ising–Heisenberg diamond

chain. For illustration, two ground-state phase diagrams are displayed in figure 2, one in
the �–α space for the system without external magnetic field (figure 2(a)) and the other one
in the α–h space for the system placed in the non-zero external field under the assumption
� = 1.0 (figure 2(b)). Both the figures clearly demonstrate that a competition between the
interaction parameters α, � and h gives rise to three possible ground states. Apart from the
usual ferrimagnetic phase (FRI) and the frustrated phase (FRU) found both in the presence as
well as the absence of the external field, the system ends up in the saturated paramagnetic phase
(SPP) once the external field is stronger than its saturation value. Spin orders within FRI, FRU
and SPP can be distinguished from one another according to their attributes (physical quantities
included in the set of equations (8)–(14)), as well as through their wavefunctions

|FRI〉 =
N∏

k=1

|−〉3k−2

N∏

k=1

|+,+〉3k−1,3k,

mz
i = −0.5, mz

h = 0.5, czz
hh = 0.25, cxx

hh = 0, czz
ih = −0.25; (20)

|FRU〉 =
N∏

k=1

|±〉3k−2

N∏

k=1

1√
2
(|+,−〉 − |−,+〉)3k−1,3k,

mz
i = 0, mz

h = 0, czz
hh = −0.25, cxx

hh = −0.25, czz
ih = 0; (21)

|SPP〉 =
N∏

k=1

|+〉3k−2

N∏

k=1

|+,+〉3k−1, 3k,

mz
i = 0.5, mz

h = 0.5, qzz
hh = 0.25, czz

hh = 0.25, cxx
hh = 0, czz

ih = 0.25. (22)

The first product in the afore-listed eigenfunctions is carried out over all Ising spins, the second
one runs over all pairs of the Heisenberg dumbbell spins and |±〉 denotes the standard ket
vector assigned to the zth projection of the Ising (µz = ± 1

2 ) and Heisenberg (Sz = ± 1
2 ) spins.

It is quite evident from the set of equations (20) that FRI displays the classical ferrimagnetic
spin arrangement usually observed in the pure Ising systems; actually, all the results clearly
indicate antiparallel alignment between the nearest-neighbouring Ising and Heisenberg spins.
It should be emphasized, however, that the classical ferrimagnetic order originating from the
antiferromagnetic Ising interaction JI can be destroyed through the competing Heisenberg
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interaction JH(�) that brings a frustration into play. As a matter of fact, the spin order
dramatically changes when the frustration parameter α exceeds the boundary value

|FRI〉 − |FRU〉 : αb = 2

� + 1
. (23)

In such a case, all Heisenberg spin pairs create singlet dimers, and on account of this singlet
pairing all Ising spins become completely free to flip. In other words, the Ising spins are
thoroughly uncorrelated in FRU due to their frustration arising from the singlet pairing between
the Heisenberg spins as also suggested by (21). Owing to this fact, it might be concluded
that the diamond spin chain splits into a set of independent monomers (Ising spins) and
dimers (Heisenberg spin pairs) whenever the frustration parameter is stronger than its boundary
value αb. Thus, FRU virtually represents a macroscopically degenerate monomer–dimer state
with the residual entropy Sres/3N = ln(2)1/3 proportional to the total number of frustrated
Ising spins. For completeness, it should be also noticed that sufficiently strong external field
stabilizes the standard SPP regardless whether FRI or FRU constitutes the zero-field ground
state (see figure 2(b)). As could be expected, all Ising as well as Heisenberg spins tend to align
into the external-field direction above the saturation field, which represents the lower bound for
an occurrence of SPP.

At this stage, it is worthwhile to compare our results with those obtained by Takano, Kubo
and Sakamoto for the spin- 1

2 Heisenberg model on the diamond chain [27]. It is noteworthy
that the zero-field ground state of the full Heisenberg model constitutes the ferrimagnetic
phase, tetramer–dimer and dimer–monomer phases depending on whether α < 0.909, 0.909 <

α < 2.0, or α > 2.0, respectively. In this regard, the ferrimagnetic and monomer–dimer
phases are separated by means of the tetramer–dimer phase, and as a consequence of this
a direct frustration-induced transition does not occur between them. Apparently, the Ising–
Heisenberg model under investigation cannot render the intermediate tetramer–dimer phase,
since the Ising spins located at the corner-sharing positions of each diamond motif represent a
barrier for the quantum fluctuations and thus they cannot form tetramers with the Heisenberg
spin pairs creating triplets, as in the case of the diamond chain described by the isotropic
Heisenberg Hamiltonian. In spite of this qualitative rather than quantitative difference, it is
interesting to confront our result for the FRI–FRU boundary αb = 1.0 (for � = 1.0) with
the α = 0.909 reported for the boundary between the ferrimagnetic and tetramer–dimer phase.
Namely, both the boundaries reflect a transition from the ferrimagnetic state with the non-zero
total magnetization to a disordered state (either tetramer–dimer or dimer–monomer) where the
frustration leads to zero total magnetization.

Next, we turn our attention to the magnetization process at zero as well as non-zero
temperatures. For this purpose, two typical magnetization versus field dependences are
plotted in figure 3 for several dimensionless temperatures. It can be readily understood by
comparing the displayed magnetization curves with the phase diagram shown in figure 2(b)
that two different zero-temperature limits obviously reflect both possible types of field-induced
transitions, FRI–SPP (figure 3(a)) and FRU–SPP (figure 3(b)). Since the ground state is being
formed in the former (latter) case by FRI (FRU), the zero-temperature magnetization curve
depicted in figure 3(a) (figure 3(b)) starts from non-zero (zero) magnetization in the limit of
vanishing external field. In contrast to this, both magnetization curves always start from zero
magnetization (disordered state) at any finite temperature according to the one-dimensional
character of the investigated spin system. It should be emphasized, moreover, that the
magnetization jumps to be observed in the magnetization curves strictly at t = 0 are gradually
smeared out when temperature is raised from zero. In addition, the higher the temperature,
the smaller the width of magnetization plateaux (horizontal regions in the magnetization versus
field dependence), which entirely disappear from the magnetization curves above a certain
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Figure 3. The total magnetization reduced with respect to its saturation value versus the external
magnetic field at various temperatures t = 0.0, 0.1, 0.3, 0.5 in ascending order along the direction
of arrows.

Figure 4. Thermal dependence of the zero-field susceptibility times temperature data for � = 1.0,
α = 0.25, 0.5, 0.75, 0.9, 1.0 (a) and � = 1.0, α = 1.1, 1.25, 1.5, 2.0 (b) in ascending order
along the direction of arrows. For clarity, the case αc = 1.0 corresponding to the FRI–FRU phase
boundary is depicted as a broken line.

temperature. Finally, it is quite interesting to mention that the identified magnetization plateaux
at one third of the saturation magnetization satisfy the Oshikawa–Yamanaka–Affleck rule [67]
proposed for the formation of quantized plateaux.

Now, let us step forward to a discussion concerned with the thermal dependence of the
zero-field susceptibility times temperature (χ t) data as displayed in figure 4. If the frustration
parameter α is selected so that FRI constitutes the ground state (figure 4(a)), then χ t data exhibit
a round minimum prior to exponential divergence appearing on temperature decrease. As can
be clearly seen from figure 4(a), the stronger the frustration parameter α, the deeper the notable
minimum whose position is simultaneously shifted towards lower temperatures. It should be
mentioned, moreover, that the appearance of a round minimum in the t–χ t dependence is a
typical feature of quantum ferrimagnets, since the χ t product monotonically decreases with
temperature for ferromagnets, while it monotonically increases for antiferromagnets [68–71].
Accordingly, the location of the round minimum can be regarded as a point that determines
ferromagnetic-to-antiferromagnetic crossover in view of thermal excitations. On the other
hand, if the frustration parameter α drives the system into the disordered FRU ground state
(figure 4(b)), the χ t product then exhibits a round minimum before it tends to the constant
value 1/12 by approaching zero temperature. Notice that this zero-temperature value can be
explained in compliance with the Curie law of the frustrated Ising spins, which effectively form
isolated spins (monomers) in FRU.
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Figure 5. Temperature variations of the specific heat when � = 1.0 is fixed. ((a), (b)) illustrate
the effect of frustration parameter α on the shape of zero-field specific heat and ((c), (d)) display
the effect of the applied external magnetic field when the frustration parameter α = 1.25 drives the
system into the disordered FRU state.

Another quantity, which is important for overall understanding of thermodynamics,
represents the specific heat. Temperature variations of the zero-field specific heat are depicted
in figures 5(a) and (b) for � = 1.0 and several values of the frustration parameter α. According
to these plots, there still emerges at least one round maximum, which can be thought of as
the usual Schottky-type maximum, irrespective of whether FRI or FRU constitutes the ground
state. If the frustration parameter is selected sufficiently close to the FRI–FRU phase boundary
given by αb, however, there also appears an additional second maximum located in the low-
temperature part of the specific heat. Apparently, the low-temperature peak becomes more
pronounced, the closer α is selected to αb. When the frustration parameter α drives the
system into the disordered FRU ground state, then the striking second maximum gradually
disappears upon further strengthening of α, since the low-temperature peak shifts towards
higher temperatures until it entirely merges with the high-temperature Schottky-type maximum
(see the curves labelled as α = 1.1, 1.25 and 1.5). These observations would suggest that the
double-peak structure in the specific heat curves originates from thermal excitations between
the ground-state spin configuration and the ones close enough in energy to the ground state.

The situation becomes even more intriguing on applying the external magnetic field. As
one can see from figure 5(c), the rising external field generally causes a gradual increase in the
height of the low-temperature peak and moves it towards the higher temperatures. A similar
trend is also seen in a change of the size and position of the high-temperature maximum,
although this Schottky-like peak moves towards higher temperature more slowly than the low-
temperature one. As a result, both maxima coalesce at a certain value of the external field,
and above this value the specific heat exhibits just single rounded maximum (see for instance
the curve h = 0.5). Apart from these rather trivial findings, a remarkable triple-peak specific
heat curve can also be detected when small but non-zero external field is applied to the system
driven by the frustration into the disordered FRU state (the case h = 0.05 in figure 5(c)).
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Figure 6. Adiabatic demagnetization in the form of temperature versus external field dependence
for � = 1.0, α = 0.5 (a) and � = 1.0, α = 1.5 (b). For better orientation, the broken curve depicts
the dependence when entropy is fixed at the residual value Sres/3N = ln(2)1/3 of FRU.

Besides two afore-described peaks, whose origin has been resolved earlier, there also appears
an additional third peak to be located at the lowest temperature. There are strong indications
that an appearance of this additional sharp maximum can be explained through the field-
induced splitting of the energy levels related to the frustrated Ising spins. In accordance with
this statement, the inset of figure 5(d) clearly demonstrates how this peculiar third maximum
gradually shifts towards higher temperatures with increasing field strength until it coalesces
with the second low-temperature peak (see the curve labelled h = 0.1).

At last, we shall briefly discuss the adiabatic demagnetization curves studied in connection
with the enhanced magnetocaloric effect. Some interesting results for adiabatic processes
keeping entropy constant are presented in figure 6 in the form of the temperature versus external
field dependence. Two depicted sets of demagnetization curves reflect two available adiabatic
scenarios related to SPP → FRI (figure 6(a)) and SPP → FRU (figure 6(b)) transitions.
Apparently, the maximal cooling rate emerges in the vicinity of critical fields and zero field,
where zero temperature is in principle reached whenever the entropy is set equal to or less
than its residual value Sres. It should be pointed out that a relatively fast heating, which occurs
when the external field is lowered from its critical value, prevents a practical use of the whole
demagnetization curves for a cooling purpose. In addition, the cooling effect becomes of
technological relevance only if the cooling rate exceeds the one of paramagnetic salts. From
this point of view, the enhanced magnetocaloric effect is observed only if the frustration drives
the system into the disordered FRU ground state (figure 6(b)). Even under this condition, the
cooling rate of paramagnetic materials is exceeded only if the entropy is chosen close enough
to its residual value Sres and the external field is below h ≈ 0.05. This limitation would imply
that temperatures in the sub-Kelvin range are in principle accessible provided that a frustrated
diamond chain compound with exchange constants of the order of a few tenths of Kelvin, such
as azurite, is used as refrigerant.

3.2. Mixed spin- 1
2 and spin-1 Ising–Heisenberg diamond chain

In this part, we shall turn our attention to the mixed spin- 1
2 and spin-1 Ising–Heisenberg

diamond chain with the aim to clarify the impact of integer-valued Heisenberg spins on the
magnetic behaviour of the frustrated diamond chain. We start our discussion repeatedly with
the ground-state analysis. The phase diagram constructed in the absence of the external field
(figure 7(a)) implies the existence of three possible ground states. Besides the semi-classically
ordered ferrimagnetic phase (FRI), there also appear the quantum ferrimagnetic phase (QFI)
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Figure 7. (a) Ground-state phase diagram in the absence of an external field; (b) ground-state phase
diagram in the α–h plane for � = 1.0. Spin order |FRI〉, |QFI〉, |FRU〉, |QFO〉 and |SPP〉 emerging
within different sectors of phase diagrams is unambiguously determined by the wavefunctions (24),
(25), (26), (28) and (29), respectively.

and the frustrated phase (FRU). FRI, QFI and FRU can be characterized by means of

|FRI〉 =
N∏

k=1

|−〉3k−2

N∏

k=1

|1, 1〉3k−1, 3k,

mz
i = −0.5, mz

h = 1, qzz
hh = 1, czz

hh = 1, cxx
hh = 0, czz

ih = −0.5; (24)

|QFI〉 =
N∏

k=1

|−〉3k−2

N∏

k=1

1√
2
(|1, 0〉 − |0, 1〉)3k−1, 3k,

mz
i = −0.5, mz

h = 0.5, qzz
hh = 0.5, czz

hh = 0, cxx
hh = −0.5, czz

ih = −0.25; (25)

|FRU〉 =
N∏

k=1

|±〉3k−2

N∏

k=1

1

2
√

δ

[√
δ + 1(|1,−1〉 + | − 1, 1〉) − √

2
√

δ − 1|0, 0〉
]

3k−1,3k
,

mz
i = 0, mz

h = 0, qzz
hh = −czz

hh = (1 + δ−1)/2, cxx
hh = −2�δ−1, czz

ih = 0; (26)

where δ = √
1 + 8�2, the first product in the afore-listed eigenfunctions is taken over all

Ising spins (|±〉 stands for µz = ± 1
2 ) and the second product runs over all pairs of the

Heisenberg dumbbell spins (|±1, 0〉 is assigned to Sz = ±1, 0). Analytic expressions for
the phase boundaries depicted in figure 7(a) read

|FRI〉 − |QFI〉 : αb1 = 1

� + 1
; |QFI〉 − |FRU〉 : αb2 = 2� − 1 + δ

2�(� + 1)
. (27)

The most significant difference between the two investigated diamond chains apparently rests
in the presence of QFI located in between FRI and FRU. This observation would suggest that
the geometric frustration initially favours a rise of QFI before it finally energetically stabilizes
FRU. Accordingly, it might be concluded that a direct frustration-induced transition between
FRI and FRU may not occur in the mixed spin- 1

2 and spin-1 diamond chain except the one
observable in the Ising limit (� = 0).

Next, the ground-state phase diagram reflecting the effect of external field is shown in
figure 7(b). This phase diagram suggests that in response to the applied external field there also
may arise the quantum ferromagnetic phase (QFO) and the saturated paramagnetic phase (SPP)
besides the aforementioned FRI, QFI and FRU phases

|QFO〉 =
N∏

k=1

|+〉3k−2

N∏

k=1

1√
2
(|1, 0〉 − |0, 1〉)3k−1,3k ,

mz
i = 0.5, mz

h = 0.5, qzz
hh = 0.5, czz

hh = 0, cxx
hh = −0.5, czz

ih = 0.25; (28)
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|SPP〉 =
N∏

k=1

|+〉3k−2

N∏

k=1

|1, 1〉3k−1,3k,

mz
i = 0.5, mz

h = 1, qzz
hh = 1, czz

hh = 1, cxx
hh = 0, czz

ih = 0.5. (29)

Before proceeding further, let us make a few comments on all these possible ground states.
Since FRI and SPP are also commonly observed in the semi-classical Ising spin systems, we
should therefore concentrate on QFI, QFO and FRU, in which quantum entanglement of the
Heisenberg spin pairs indicates the quantum nature of these phases. It can easily be understood
from equations (25) and (28) that QFI and QFO are quite similar one to each other. As a matter
of fact, all pairs of Heisenberg spins reside in both phases in the same eigenstate, and thus
the only difference between them consists in the spin arrangement of their Ising counterparts.
In QFO, which is stable at stronger fields, the Ising spins tend to align towards the external
field, whilst they are oriented opposite to the external field in QFI, which is stable at relatively
weaker fields. Notice that the quantum entanglement between the pairs of Heisenberg spins that
occurs in QFI and QFO can also be understood within the valence-bond-solid picture [65, 66].
If spin-1 sites are decomposed into two spin- 1

2 variables, then one of the decomposed spins
at each spin-1 site forms the singlet dimer with its nearest-neighbouring spin-1 site, while
the other one is polarized by the external field. As a result of this incomplete pairing, each
spin-1 site effectively acts in QFI and QFO as would the spin- 1

2 variable. Further, it should
be also remarked that all Ising spins are completely free to flip (frustrated) in FRU on behalf
of a preferred antiferromagnetic alignment between each pair of Heisenberg spins. Owing to
this fact, FRU can be viewed as a state characterized by a complete randomization of the Ising
spins, which consequently leads to a macroscopic degeneracy of FRU resembling in its residual
entropy Sres/3N = ln(2)1/3.

To clarify the magnetization scenario available for the mixed spin- 1
2 and spin-1 diamond

chain, we depict in figure 8 all possible types of magnetization curves. In agreement with the
phase diagram shown in figure 7(b), there are in total four different types of magnetization
curves reflecting the transitions FRI–SPP (a), QFI–FRI–SPP (b), FRU–FRI–SPP (c) and FRU–
QFO–SPP (d). It should be stressed, nevertheless, that the system undergoes true transitions
between these phases merely at zero temperature, where indeed stepwise magnetization curves
emerge with abrupt change(s) of the magnetization at critical field(s). However, it is worthy
of notice that there are no real magnetization jumps at any finite temperature and the sharp
stepwise magnetization curves to be observed at zero temperature are gradually smeared out as
temperature increases. It can be clearly seen from figure 8 that an increase in temperature also
actually shrinks the width of plateaux until the plateau states completely disappear from the
magnetization curves above a certain temperature. The most notable magnetization curves are
those with the zero-field ground state corresponding to FRU as shown in figures 8(c) and (d).
According to these plots, it can easily be realized that all frustrated Ising spins tend to align to
the external-field direction for any finite but non-zero external field provided that temperature is
set to zero. At non-zero temperatures, in contrast, the magnetization rises much more steadily
in the vicinity of zero field in comparison with the magnetization curves having the long-range-
ordered FRI (figure 8(a)) and QFI (figure 8(b)) phases in the ground state. Finally, it is also
worthwhile to remark that the observed magnetization plateaux at 1

5 (QFI and FRU) and 3
5

(QFO) of the saturation magnetization satisfy the Oshikawa–Yamanaka–Affleck rule [67].
Now, let us investigate in particular an influence of the spin frustration on thermal

variations of the zero-field susceptibility times temperature (χ t) data. The temperature
dependence of the χ t product is displayed in figure 9(a) for several values of the frustration
parameter α that determine the ground state to be either of FRI or QFI type. Interestingly, χ t
data then exhibit a round minimum upon cooling, which is followed by an exponentially steep
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Figure 8. The total magnetization reduced with respect to its saturation value as a function of the
external field at various temperatures t = 0.0, 0.1, 0.3, 0.5 in ascending order along the direction of
arrows.

increase that appears by approaching zero temperature. It is quite obvious from figure 9(a) that
the stronger the parameter of frustration α, the deeper the notable minimum whose position is
simultaneously shifted towards lower temperatures. It is worth remembering, moreover, that
the minimum in the t–χ t plot is a typical feature of quantum ferrimagnets [68], and also in our
case the minimum becomes especially marked by selecting α ∈ ( 1

2 , 1) when QFI constitutes
the ground state. On the other hand, the temperature dependence of χ t data is depicted in
figure 9(b) for the case when the frustration parameter α > 1 drives the system into the
disordered FRU ground state. Under these circumstances, the susceptibility diverges as t−1

at low temperatures and the χ t product tends to constant value 1/12 near zero temperature.
This value can be interpreted in terms of the Curie law of the frustrated Ising spins, since the
spin arrangement that appears in FRU can be viewed as being composed of an independent set
of the antiferromagnetic Heisenberg dimers and isolated Ising monomers, whereas the former
ones do not contribute to the χ t product in the zero-temperature limit.

To gain an insight into overall thermodynamics, let us turn our attention to a thermal
behaviour of the specific heat. For this purpose, the zero-field specific heat is plotted against
temperature in figures 10(a) and (b) for several values of the frustration parameter α. It
can be clearly seen from figure 10(a) that a rounded Schottky-type maximum observable at
smaller values of α (e.g. α = 0.25) gradually changes, as the frustration strengthens, to a
striking dependence with the shoulder superimposed on this round maximum (α = 0.4). It is
noteworthy that the shoulder becomes more pronounced the closer α is selected to αb1 = 0.5,
determining the phase boundary between FRI and QFI. Under further increase of the frustration
the shoulder merges with the Schottky-type maximum, which eventually gives rise to a peculiar
non-rounded maximum with almost constant value of the specific heat over a wide temperature
range (α = 0.6). Next, figure 10(b) shows how the specific heat recovers its double-peak
structure when α approaches another phase boundary between QFI and FRU to appear at
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Figure 9. Thermal dependence of the zero-field susceptibility times temperature data for � = 1.0,
α = 0.25, 0.4, 0.5, 0.6, 0.75, 0.9, 1.0 (a) and � = 1.0, α = 1.1, 1.25, 1.5, 1.75 (b) in ascending
order along the direction of arrows. For clarity, the cases αc1 = 0.5 and αc2 = 1.0 corresponding to
the phase boundaries between FRI–QFI and QFI–FRU, respectively, are depicted as broken lines.

Figure 10. Temperature variations of the specific heat when � = 1.0 is fixed. ((a), (b)) illustrate the
effect of frustration parameter α on the shape of zero-field specific heat, whereas ((c), (d)) display
the effect of applied external field when the frustration parameter α = 1.25 drives the system into
the disordered FRU state.

αb2 = 1.0 (see for instance the curves for α = 0.75 and 0.9). In addition, it is quite evident
from figure 10(b) that repeated strengthening of the frustration results in a suppression of the
low-temperature peak until it finally merges with the high-temperature one. Note furthermore
that the high-temperature peak has a general tendency to enhance in magnitude (both in height
as well as in width) as α increases and its position is shifted towards higher temperatures.
Altogether, it might be concluded that the remarkable double-peak structure of the specific heat
arises just when the frustration parameter is close enough to a phase boundary. This result is
taken to mean that the observed double-peak specific heat curves always originate from thermal
excitations to a spin configuration rather close in energy to the ground state.
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Figure 11. Adiabatic demagnetization in the form of temperature versus external field dependence
when � = 1.0, α = 0.75 (a) and � = 1.0, α = 1.75 (b). For clarity, the broken curve depicts the
dependence when entropy is fixed at the residual value Sres/3N = ln(2)1/3 of FRU.

An even more striking situation emerges by turning on the external field. The overall trend
of the external field is to increase the height and width of the low-temperature peak and to
shift it towards higher temperatures until it coalesces with the higher-temperature maximum.
It should be remarked, nevertheless, that the most notable dependences of the specific heat
arise from when the frustration leads to the disordered FRU ground state. Besides the afore-
described general trends illustrated in figure 10(c), there also appears a remarkable kind of
specific heat curve with the triple-peak structure as particularly drawn in figure 10(d) and its
inset. Apparently, the additional third peak observable at very low temperatures occurs on
applying the small but non-zero external field. It is therefore quite reasonable to conjecture that
an origin of this low-temperature peak lies in the field-induced splitting of energy levels related
to the frustration of the Ising spins. Actually, the stronger the external field, the greater the
splitting caused by the external field and, consequently, the position of this peak steadily shifts
towards higher temperatures. Above a certain external field, the additional third peak vanishes
because of merging with the low-temperature peak also observable in the zero-field case.

Finally, we shall close our discussion with an exploration of the adiabatic demagnetization
examined in connection with the enhanced magnetocaloric effect. Adiabatic processes keeping
the entropy constant are plotted in figure 11 in the form of the temperature versus external field
dependence. Two displayed sets of demagnetization curves evidently reflect adiabatic change
of temperature, which accompanies the transitions SPP → FRI → QFI (figure 11(a)) and
SPP → QFO → FRU (figure 11(b)). When comparing these results with the ones formerly
discussed for the spin- 1

2 diamond chain (figure 6), one easily finds some similarities between
the two investigated diamond chains. Indeed, the most obvious drop in temperature is retrieved
once again in the vicinity of critical fields and zero field, where zero temperature is in principle
reached whenever the entropy is set equal to or less than its residual value Sres. Moreover,
the enhanced magnetocaloric effect with the cooling rate exceeding the one of paramagnetic
salts occurs just as the disordered FRU phase constitutes the ground state and the external field
is below h ≈ 0.05. By contrast, the most obvious difference between the two investigated
spin systems consists in the greater diversity of the adiabatic process of the latter (mixed-spin)
system, which exhibits dependences with two critical fields in addition to the ones with one
critical field only.

4. Conclusion

Exactly solvable frustrated spin systems are currently much sought after in the field of
condensed matter physics, since they can serve as useful model systems for in-depth
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understanding of the effect of geometric frustration still not fully elucidated yet. In the
present work, we have provided rigorous results for one notable example of such a system,
the mixed spin- 1

2 and spin-S Ising–Heisenberg diamond chain tractable within the generalized
decoration–iteration map. It is worthy of mention that this rather simple model system has
primarily been developed to predict and to understand the behaviour of insulating magnetic
materials, in which the Heisenberg dimers interact with the Ising monomers in such a way
that they form the diamond chain. Notice that the coordination polymers consisting of the
pairs of interacting transition-metal elements (Heisenberg dimers) coupled to the rare-earth
elements (Ising monomers) represent perspective experimental realizations of the proposed
system. Although we are not aware of any real coordination compound which would meet
this requirement, the recent progress in the design and controlled synthesis of the molecular-
based magnetic materials supports our hope that it would be possible to prepare such polymeric
chains in the near future.

It is worthwhile to remark that a special emphasis is laid in our study on the investigation
of geometric frustration generated by the competition between Heisenberg- and Ising-type
interactions. Our results clearly demonstrate that an interplay between the frustration and
quantum fluctuations, both arising from the Heisenberg exchange interaction, is at the origin of
interesting behaviour not commonly observed in the semi-classical Ising spin systems. Indeed,
this interplay gives rise to several peculiar ground states with entangled states of Heisenberg
spins and quantum effects turned out to play a substantial role in determining their finite-
temperature properties as well. Among other matters, we have found rigorous evidence for
appearance of the quantized plateaux in the magnetization curves, the round minimum in the
temperature dependence of the susceptibility times temperature data, the double-peak zero-field
specific heat curves, the enhanced magnetocaloric effect and so on. In our opinion, the most
interesting finding to emerge from our study is direct evidence of the triple-peak specific heat
curve that appears when applying small external field to the system driven by the frustration
into the disordered state. To the best of our knowledge, the discovery and possible explanation
of the triple-peak structure in the specific heat curve has not been reported for any frustrated
system hitherto.

Last but not least, it should be remarked that the relative ease of the generalized mapping
method used here implies a possibility of further extensions. Actually, this approach can
straightforwardly be extended to account also for higher-spin values of both Ising as well as
Heisenberg spins, the single-ion anisotropy effect, the biquadratic exchange interaction, the
next-nearest-neighbour interaction, the multispin interactions, etc. It is also noteworthy that the
applied procedure is not constrained either by the lattice topology, and thus it can be utilized
for investigating the effect of geometric frustration on the planar Ising–Heisenberg lattices
composed of the diamond-shaped units [72, 73]. Our next work continues in this direction.

Acknowledgments

The authors express gratitude to scientific grant agencies VEGA and APVV, supporting this
work under grants VEGA 1/2009/05 and APVT 20-005204.

Appendix

Before we list explicit expressions for the functions G(x) and Fi (x) (i = 1–4), which enter the
transformation formulae (3)–(4) and the set of equations (15)–(17), respectively, let us establish
the notation jH = β JH, hH = β HH and δ = √

1 + 8�2.
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(a) Expressions for the spin case S = 1
2 :

G(x) = 2 exp(− jH/4) cosh(x − hH) + 2 exp( jH/4) cosh( jH�/2),

F1(x) = − exp(− jH/4) sinh(x − hH)/G(x),

F2(x) = [exp( jH/4) cosh( jH�/2) − exp(− jH/4) cosh(x − hH)]/[2G(x)
]
,

F3(x) = − exp( jH/4) sinh( jH�/2)/
[
2G(x)

]
,

F4(x) = 1/4.

(b) Expressions for the spin case S = 1:

G(x) = 2 exp( jH/2) cosh( jHδ/2) + 2 exp(− jH) cosh[2(x − hH)]
+ exp( jH) + 4 cosh(x − hH) cosh( jH�),

F1(x) = −{2 exp(− jH) sinh[2(x − hH)] + 2 sinh(x − hH) cosh( jH�)}/G(x),

F2(x) = {2 exp(− jH) cosh[2(x − hH)] − exp( jH) − δC − S}/G(x),

F3(x) = −{2 cosh(x − hH) sinh( jH�) + 4�S}/G(x),

F4(x) = {2 exp(− jH) cosh[2(x − hH)] + exp( jH)

+ 2 cosh(x − hH) cosh( jH�) + δC + S}/G(x),

where S = exp( jH/2) sinh( jHδ/2)/δ and C = exp( jH/2) cosh( jHδ/2)/δ.
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[23] Monti F and Sütö A 1991 Phys. Lett. A 156 197–200
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